
EVENTS OF THE GUI
WINDOW INTERFACE

Version 1.0

Reference book

Moscow, 2000 year

2

1 TABLE OF CONTENTS

1 TABLE OF CONTENTS..2

2 Introduction ..3
2.1 Field of application .. 3
2.2 Requirements to the user training.. 3

3 EVENTS DESCRIPTION..4
3.1 Events sent to windows.. 4
3.2 Events sent to controls ... 9
3.3 Control notification codes ... 10
3.4 Virtual key codes.. 14

3

2 INTRODUCTION

2.1 Field of application

Window events represent events which are sent by the graphical user interface (GUI) to
the GWnd class objects and its descendants (for more information see the reference book on the
standard gui library).

2.2 Requirements to the user training

A user should have computer operation skills and study the current manual. It is also
necessary to learn the Pluk language reference book, the reference book on the standard library.

4

3 EVENTS DESCRIPTION

3.1 Events sent to windows

A window event handler is assigned with the help of the event command (for more
information see the Pluk language reference book). Handler assignment does not mean its
obligatory calling on receiving the event. It is necessary to allow the event to pass to a window
object. There are special methods GWnd::AllowEvent and GWnd::ForbidEvent (for more
information see the reference book on the standard gui library) that allows or forbids the event
receiving. It is always allowed to receive the following events: WND_COMMAND (see 3.1.1,
3.2.1), WND_HSCROLL (see. 3.1.4), WND_VSCROLL (see 3.1.5), as well as user's (see 3.1.17)
and command events (see 3.1.180, 3.2.2).

A handler can return an integer value. –1 value is defined as the default event handling. In
some cases (for instance, WND_UPDATE, see 3.1.3) default handling allows you to avoid the
erroneous situation.

3.1.1 WND_COMMAND

EventHandler(int, int)
param id, notifyCode;
EventHandler(int, int, int)
param id, notifyCode, pos;
This event is sent to a window when a user selects a menu item, performs any actions in a

control or presses a key which is interpreted by the keyboard accelerator table.
id Menu item or control identifier.
notifyCode Notification code, if the event is from the control (see 3.3). 0, if the

event is from the menu. 1, if the event is from the keyboard
accelerator.

pos Scroll bar position, if the event is from the control of the scroll bar
type.

Returns –1, if the default handling is required.
Comments
The receiving of this event is always allowed.
The second handler type is called for a control that represents a scroll bar, the first type is

called for controls of other types, menu item and the key which is interpreted by keyboard
accelerator table.

The default handling of the current event sends additional WND_COMMAND events to
all objects (derived from the GControl class) which are connected to the control from which the
notification has been received(see 3.2.1).

3.1.2 WND_SIZE

EventHandler(int, int, int)
param sizeType, width, height;
This event is sent to a window when its size has changed.

5

sizeType Event type.
width New client region width.
height New client region height.

Returns –1, if the default handling is required.
Comments
Available values of the sizeType parameter include:

SIZE_RESTORED The window has changed its size but neither SIZE_MINIMIZED
nor SIZE_MAXIMIZED event has not occurred.

SIZE_MINIMIZED The window was minimized.
SIZE_MAXIMIZED The window was maximized.

3.1.3 WND_UPDATE

EventHandler(void)
This event is sent to a window when the system or an application requests the refreshing

of the application window (or part of the window).
Returns –1, if the default handling is required.
Comments
This event can be received according to two reasons. First, if any actions that require

window content update occurred in the system, then the WND_UPDATE event is placed into
the application event queue. Second, the application itself can place the event into the queue by
calling the GWnd::Invalidate method (for more information see the reference book on the
standard gui library). If there are no other events in the queue, then this event will be sent to the
window. If it is necessary for the application to update the window immediately, then it should
force the event to be extracted from the queue by calling the GWnd::Update method.

If the application did not perform drawing in the current event handler, then it should
return –1 in order to avoid the erroneous situation .

3.1.4 WND_HSCROLL

EventHandler(int, int)
param notifyCode, pos;
This event is sent to a window when a user scrolls the horizontal window scroll bar.

notifyCode Notification code (see 3.3.50).
pos The current position of the scroll bar slider.

Returns –1, if the default handling is required.
Comments
The receiving of this event is always allowed.

3.1.5 WND_VSCROLL

EventHandler(int, int)
param notifyCode, pos;
This event is sent to a window when a user scrolls the vertical window scroll bar.

notifyCode Notification code (see 3.3.5).
pos The current position of the scroll bar slider.

Returns –1, if the default handling is required.
Comments
The receiving of this event is always allowed.

6

3.1.6 WND_TIMER

EventHandler(int)
param id;
This event is sent to the application event queue after each time interval determined in the

GWnd::SetTimer method which is used for setting the window timer (for more information see
the reference book on the standard gui library).

id Timer identifier.
Returns –1, if the default handling is required.
Comments
If the previous WND_TIMER event remains in the queue after the time interval

determined in the GWnd::SetTimer method, the the new one is not plased into the queue.
If there are no other events in the queue, then this event will be sent to the window.

3.1.7 WND_ACTIVATE

EventHandler(int)
param activeType;
This event is sent when a window is activated or deactivated. First of all this event is sent

to the deactivated window and then to the activated one.
activeType Specifies whether the window is activated or deactivated.

Returns –1, if the default handling is required.
Comments
Available values of the activeType parameter include:

WA_INACTIVE The window is deactivated.
WA_ACTIVE The window is activated without using the mouse.
WA_CLICKACTIVE The window is activated via the mouse.

3.1.8 WND_KEYDOWN

EventHandler(int)
param virtCode;
This event is sent when a user presses a key.

virtCode Virtual key code (see 3.4).
Returns –1, if the default handling is required.

3.1.9 WND_KEYUP

EventHandler(int)
param virtCode;
This event is sent when a user releases a key.

virtCode Virtual key code (see 3.4).
Returns –1, if the default handling is required.

3.1.10 WND_MOUSEMOVE

EventHandler(int, int)
param x, y;
This event is sent when the mouse pointer is moving.

x x-coordinate of the pointer relatively to the top-left window corner.
y y-coordinate of the pointer relatively to the top-left window corner.

Returns –1, if the default handling is required.

7

3.1.11 WND_LBUTTONDOWN

EventHandler(int, int)
param x, y;
This event is sent when a user presses the left mouse button.

x x-coordinate of the pointer relatively to the top-left window corner.
y y-coordinate of the pointer relatively to the top-left window corner.

Returns –1, if the default handling is required.
Comments
The default handling of the current event brings the window to front and passes the input

focus to it.

3.1.12 WND_LBUTTONUP

EventHandler(int, int)
param x, y;
This event is sent when a user releases the left mouse button.

x x-coordinate of the pointer relatively to the top-left window corner.
y y-coordinate of the pointer relatively to the top-left window corner.

Returns –1, if the default handling is required.

3.1.13 WND_LBUTTONDBLCLK

EventHandler(int, int)
param x, y;
This event is sent when a user double clicks the left mouse button.

x x-coordinate of the pointer relatively to the top-left window corner.
y y-coordinate of the pointer relatively to the top-left window corner.

Returns –1, if the default handling is required.
Comments
The double click of the left mouse button forces the following events to occur:

WND_LBUTTONDOWN, WND_LBUTTONUP, WND_LBUTTONDBLCLK,
WND_LBUTTONUP.

3.1.14 WND_RBUTTONDOWN

EventHandler(int, int)
param x, y;
This event is sent when a user presses the right mouse button.

x x-coordinate of the pointer relatively to the top-left window corner.
y y-coordinate of the pointer relatively to the top-left window corner.

Returns –1, if the default handling is required.
Comments
The default handling of the current event brings the window to front and passes the input

focus to it.

3.1.15 WND_RBUTTONUP

EventHandler(int, int)
param x, y;
This event is sent when a user releases the right mouse button.

x x-coordinate of the pointer relatively to the top-left window corner.

8

y y-coordinate of the pointer relatively to the top-left window corner.
Returns –1, if the default handling is required.
Returns –1, if the default handling is required.
Comments
The default handling of the current event displays the window context menu if such a

menu is assigned to the window.

3.1.16 WND_RBUTTONDBLCLK

EventHandler(int, int)
param x, y;
This event is sent when a user double clicks the right mouse button.

x x-coordinate of the pointer relatively to the top-left window corner.
y y-coordinate of the pointer relatively to the top-left window corner.

Returns –1, if the default handling is required.
Comments
The double click of the left mouse button forces the following events to occur:

WND_RBUTTONDOWN, WND_RBUTTONUP, WND_RBUTTONDBLCLK,
WND_RBUTTONUP.

3.1.17 User’s event

EventHandler(...)
param [pars];
An event from WND_USER to 0x8000 represents a user’s event which can be freely

used by an application.
pars Parameters that depend on the event.

Returns –1, if the default handling is required.
Comments
The receiving of this event is always allowed.

3.1.18 Command event

EventHandler(int, int)
param id, notifyCode;
EventHandler(int, int, int)
param id, notifyCode, pos;
An event from CMD_FIRST to 0x20000 represents a command event. It is received

from the controls which are owned by the window.
id Menu item or control identifier.
notifyCode Notification code, if the event is from the control (see 3.3). 0, if the

event is from the menu. 1, if the event is from the keyboard
accelerator.

pos Scroll bar position, if the event is from the control of the scroll bar
type.

Returns –1, if the default handling is required.
Comments
The receiving of this event is always allowed.
The second handler type is called for a control that represents a scroll bar, the first type is

called for controls of other types, menu item and the key which is interpreted by keyboard
accelerator table.

9

The event number is determined as CMD_FIRST plus menu item or control identifier.
For instance, if it is necessary to define a handler for the button which identifier is equal to 101,
then you should assign a handler to the CMD_FIRST + 101 event. On calling the method the id
parameter value will be equal to 101.

Command events of both types are generated on executing the GWnd::OnCommand
method (for more information see the reference book on the standard gui library).

3.2 Events sent to controls

Some control types can have connected to them objects of the classes derived from the
GControl class (GListBox, GComboBox, GEdit, GTable (for more information see the
reference book on the standard gui library). If an application requires the default handling for the
WND_COMMAND event which is sent to a window that owns such a control and the objects of
the above-listed types exist and connected with the control, then the WND_COMMAND event
also will be sent to these objects (but this event will have the auxiliary parameter – reference to
the window).

3.2.1 WND_COMMAND

EventHandler(refer object GWnd, int, int)
param wnd, id, notifyCode;
This event is sent to a control as a result of default handling the WND_COMMAND

event which is sent to the window that owns the control.
wnd The window that owns the control.
id Control identifier.
notifyCode Notification code (see 3.3).

Returns –1, if the default handling is required.
Comments
The receiving of this event is always allowed.

3.2.2 Command event

EventHandler(refer object GWnd, int, int)
param wnd, id, notifyCode;
An event from CMD_FIRST to 0x20000 represents a command event. It is received

from a control as a result of default handling the WND_COMMAND event which is sent to the
window that owns the control.

wnd The window that owns the control.
id Control identifier.
notifyCode Notification code (see 3.3).

Returns –1, if the default handling is required.
Comments
The receiving of this event is always allowed.
The event number is determined as CMD_FIRST plus menu item or control identifier.

For instance, if it is necessary to define a handler for the button which identifier is equal to 101,
then you should assign a handler to the CMD_FIRST + 101 event. On calling the method the id
parameter value will be equal to 101.

Command events of both types are generated from the GControl::OnCommand method
(for more information see the reference book on the standard gui library).

10

3.3 Control notification codes

A window receives notification codes from controls via the notifyCode parameter of
command events (see 3.1.1, 3.1.180, 3.2.1, 3.2.2). This code indicates that the state of the
control, from which the command event is received, has changed. For instance, when the button
with the 101 identifier is pressed, the window that owns this button receives the CMD_FIRST +
101 event with the id parameter equal to 101 and the notifyCode parameter equal to
BN_CLICKED. Below you can find the notification codes for all control types supported by
GUI.

3.3.1 Button

3.3.1.1 BN_CLICKED
It is sent when a user presses a button, moreover, it is sent at the moment when a user

releases a mouse button or a key.

3.3.1.2 BN_PUSHED
It is sent when a user presses a button, moreover, it is sent at the moment when a user

presses a mouse button or a key.
Comments
Notification is sent only for the button with the extended notification.

3.3.1.3 BN_RCLICKED
It is sent when a user presses the right mouse button, moreover, it is sent at the moment

when a user releases the mouse button.
Comments
Notification is sent only for the button with the extended notification.

3.3.1.4 BN_SETFOCUS
It is sent when a button receives the input focus.
Comments
Notification is sent only for the button with the extended notification.

3.3.1.5 BN_RELEASEFOCUS
It is sent when a button looses the input focus.
Comments
Notification is sent only for the button with the extended notification.

3.3.2 Editor

3.3.2.1 EN_SETFOCUS
It is sent when an editor receives the input focus.

3.3.2.2 EN_RELEASEFOCUS
It is sent when an editor looses the input focus.

11

3.3.2.3 EN_CHANGE
It is sent when a user performed any action that results in text modification within an

editor.
Comments
In contrast to the EN_UPDATE notification the current notification is sent after an editor

has updated itself on screen.

3.3.2.4 EN_UPDATE
It is sent when an editor is going to update the modified text.
Comments
This notification is sent after an editor has formatted the text but before it displays this

text on screen.

3.3.2.5 EN_MAXTEXT
It is sent when the number of inserted characters exceeds the restriction on the number of

characters within an editor. It is also sent when the editor does not support horizontal (vertical)
text scrolling and the insertion exceeds the editor width (height).

3.3.3 List

3.3.3.1 LBN_SELCHANGE
It is sent when the selection within a list has changed.
Comments
Notification is not sent when the selection has changed by calling one of the following

methods: GListBox::SetSel, GListBox::SetStrSel (for more information see the reference book
on the standard gui library).

For multi-selection lists the event is sent each time a user presses an arrow key even if the
selection does not change.

3.3.3.2 LBN_DBLCLK
It is sent when a user double clicks the left mouse button on the list line.

3.3.3.3 LBN_SETFOCUS
It is sent when a list receives the input focus.

3.3.3.4 LBN_RELEASEFOCUS
It is sent when a list looses the input focus.

3.3.4 List combined with an editor control

3.3.4.1 CBN_SELCHANGE
It is sent when the selection within a list has changed.
Comments
Notification is not sent when the selection has changed by calling one of the following

methods: GComboBox::SetSel, GComboBox::SetStrSel (for more information see the
reference book on the standard gui library).

12

3.3.4.2 CBN_DBLCLK
It is sent when a user double clicks the left mouse button on the list line.
Comments
Notification is not sent for the dropdown list as the single click results in closing the list.

3.3.4.3 CBN_SETFOCUS
It is sent when a list receives the input focus.

3.3.4.4 CBN_RELEASEFOCUS
It is sent when a list looses the input focus.

3.3.4.5 CBN_EDITCHANGE
It is sent when a user performed any action that results in text modification within a list

editor.
Comments
In contrast to the CBN_EDITUPDATE notification the current notification is sent after a

list editor has updated itself on screen.

3.3.4.6 CBN_EDITUPDATE
It is sent when a list editor is going to update the modified text.
Comments
This notification is sent after a list editor has formatted the text but before it displays this

text on screen.

3.3.4.7 CBN_DROPDOWN
It is sent when a list is dropped down.
Comments
Notification is sent only for the dropdown list.

3.3.4.8 CBN_CLOSEUP
It is sent when a list is closed.
Comments
Notification is sent only for the dropdown list.

3.3.5 Scroll bar

3.3.5.1 SB_LINEUP
It is sent when a user moves the scroll bar slider upward on one step.

3.3.5.2 SB_LINELEFT
It is sent when a user moves the scroll bar slider to the left on one step.

3.3.5.3 SB_LINEDOWN
It is sent when a user moves the scroll bar slider downward on one step.

3.3.5.4 SB_LINERIGHT
It is sent when a user moves the scroll bar slider to the right on one step.

13

3.3.5.5 SB_PAGEUP
It is sent when a user moves the scroll bar slider upward on one page step.

3.3.5.6 SB_PAGELEFT
It is sent when a user moves the scroll bar slider to the left on one page step.

3.3.5.7 SB_PAGEDOWN
It is sent when a user moves the scroll bar slider downward on one page step.

3.3.5.8 SB_PAGERIGHT
It is sent when a user moves the scroll bar slider to the right on one page step.

3.3.5.9 SB_THUMBTRACK
It is sent when a user moves the scroll bar slider using the mouse.

3.3.5.10 SB_ENDSCROLL
It is sent when a user releases a mouse button on the scroll bar slider.

3.3.6 Table

3.3.6.1 TN_SELCHANGE
It is sent when the selection within a table has changed.
Comments
Notification is not sent when the selection has changed by calling the GTable::SetSel

method (for more information see the reference book on the standard gui library).
For multi-selection tables the event is sent each time a user presses an arrow key even if

the selection within the table does not change.
In the current notification code handler the calling of the GTable::GetNotifyPos method

(for more information see the reference book on the standard gui library) returns the position of
the cell which is selected y a user (for a single-selection table) or position of the last cell for
which a user set or discarded selection (for a multi-selection table).

3.3.6.2 TN_DBLCLK
It is sent when a user double clicks the left mouse button on a table cell.
In the current notification code handler the calling of the GTable::GetNotifyPos method

(for more information see the reference book on the standard gui library) returns the position of
the cell which was double clicked by a user.

3.3.6.3 TN_RCLICKED
It is sent when a user releases the right mouse button on a table cell.
In the current notification code handler the calling of the GTable::GetNotifyPos method

(for more information see the reference book on the standard gui library) returns the position of
the cell on which a user released the right mouse button.

3.3.6.4 TN_SETFOCUS
It is sent when a table receives the input focus.

14

3.3.6.5 TN_RELEASEFOCUS
It is sent when a table looses the input focus.

3.3.6.6 TN_COLUMNCLICK
It is sent when a user presses the button situated in the table column header.
Comments
In the current notification code handler the calling of the GTable::GetNotifyPos method

(for more information see the reference book on the standard gui library) returns the index of the
column at which header a user pressed the button (in the second element of the returned vector).

3.3.6.7 TN_COLUMNENDTRACK
It is sent when a user has moved the bound between table columns using the mouse.
Comments
In the current notification code handler the calling of the GTable::GetNotifyPos method

(for more information see the reference book on the standard gui library) returns the index of the
column which is situated at the left from the moved bound (in the second element of the returned
vector).

3.3.6.8 TN_BEGINEDIT
It is sent when a user begins the table cell editing.
In the current notification code handler the calling of the GTable::GetNotifyPos method

(for more information see the reference book on the standard gui library) returns the position of
the cell which is being edited.

3.3.6.9 TN_ENDEDIT
It is sent when a user successfully completed the table cell editing.
Comments
The current notification is sent after a user finished the cell editing by pressing the Enter

key or by activating table or another window.
In the current notification code handler the calling of the GTable::GetNotifyPos method

(for more information see the reference book on the standard gui library) returns the position of
the cell whose editing is completed.

3.3.6.10 TN_CANCELEDIT
It is sent when a user unsuccessfully completed the table cell editing.
Comments
The current notification is sent after a user finished the cell editing by pressing the Cancel

key.
In the current notification code handler the calling of the GTable::GetNotifyPos method

(for more information see the reference book on the standard gui library) returns the position of
the cell whose editing is completed.

3.4 Virtual key codes

Virtual key codes are used for hardware-independent key identification when handling the
WND_KEYDOWN (see 3.1.8) and WND_KEYUP (see 3.1.9). Virtual code of numeric keys is

15

equal to the ASCII code of the appropriate number. Virtual code of literal keys is equal to the
ASCII code of the appropriate upper-case letter. System keys have the following virtual codes:
Code Key
VK_LBUTTON Left mouse button
VK_RBUTTON Right mouse button
VK_ESCAPE Esc
VK_F1 F1
VK_F2 F2
VK_F3 F3
VK_F4 F4
VK_F5 F5
VK_F6 F6
VK_F7 F7
VK_F8 F8
VK_F9 F9
VK_F10 F10
VK_F11 F11
VK_F12 F12
VK_PRINT Print Screen
VK_SCROLL Scroll Lock
VK_PAUSE Pause Break
VK_BACK Backspace
VK_TAB Tab
VK_CAPITAL Caps Lock
VK_RETURN Enter
VK_SHIFT Shift
VK_CONTROL Ctrl
VK_ALT Alt
VK_SPACE Space
VK_INSERT Insert
VK_HOME Home
VK_PRIOR Page Up
VK_DELETE Delete
VK_END End
VK_NEXT Page Down
VK_UP Up Arrow
VK_LEFT Left Arrow
VK_DOWN Down Arrow
VK_RIGHT Right Arrow
VK_NUMPAD0 0 (on numeric keypad)
VK_NUMPAD1 1 (on numeric keypad)
VK_NUMPAD2 2 (on numeric keypad)
VK_NUMPAD3 3 (on numeric keypad)
VK_NUMPAD4 4 (on numeric keypad)
VK_NUMPAD5 5 (on numeric keypad)
VK_NUMPAD6 6 (on numeric keypad)

16

VK_NUMPAD7 7 (on numeric keypad)
VK_NUMPAD8 8 (on numeric keypad)
VK_NUMPAD9 9 (on numeric keypad)
VK_NUMLOCK Num Lock
VK_DIVIDE / (on numeric keypad)
VK_MULTIPLY * (on numeric keypad)
VK_SUBTRACT – (on number panel)
VK_ADD + (on number panel)
VK_DECIMAL . (on number panel)

	1 TABLE OF CONTENTS
	2 INTRODUCTION
	2.1 Field of application
	2.2 Requirements to the user training

	3 EVENTS DESCRIPTION
	3.1 Events sent to windows
	3.1.1 WND_COMMAND
	3.1.2 WND_SIZE
	3.1.3 WND_UPDATE
	3.1.4 WND_HSCROLL
	3.1.5 WND_VSCROLL
	3.1.6 WND_TIMER
	3.1.7 WND_ACTIVATE
	3.1.8 WND_KEYDOWN
	3.1.9 WND_KEYUP
	3.1.10 WND_MOUSEMOVE
	3.1.11 WND_LBUTTONDOWN
	3.1.12 WND_LBUTTONUP
	3.1.13 WND_LBUTTONDBLCLK
	3.1.14 WND_RBUTTONDOWN
	3.1.15 WND_RBUTTONUP
	3.1.16 WND_RBUTTONDBLCLK
	3.1.17 User’s event
	3.1.18 Command event

	3.2 Events sent to controls
	3.2.1 WND_COMMAND
	3.2.2 Command event

	3.3 Control notification codes
	3.3.1 Button
	3.3.1.1 BN_CLICKED
	3.3.1.2 BN_PUSHED
	3.3.1.3 BN_RCLICKED
	3.3.1.4 BN_SETFOCUS
	3.3.1.5 BN_RELEASEFOCUS

	3.3.2 Editor
	3.3.2.1 EN_SETFOCUS
	3.3.2.2 EN_RELEASEFOCUS
	3.3.2.3 EN_CHANGE
	3.3.2.4 EN_UPDATE
	3.3.2.5 EN_MAXTEXT

	3.3.3 List
	3.3.3.1 LBN_SELCHANGE
	3.3.3.2 LBN_DBLCLK
	3.3.3.3 LBN_SETFOCUS
	3.3.3.4 LBN_RELEASEFOCUS

	3.3.4 List combined with an editor control
	3.3.4.1 CBN_SELCHANGE
	3.3.4.2 CBN_DBLCLK
	3.3.4.3 CBN_SETFOCUS
	3.3.4.4 CBN_RELEASEFOCUS
	3.3.4.5 CBN_EDITCHANGE
	3.3.4.6 CBN_EDITUPDATE
	3.3.4.7 CBN_DROPDOWN
	3.3.4.8 CBN_CLOSEUP

	3.3.5 Scroll bar
	3.3.5.1 SB_LINEUP
	3.3.5.2 SB_LINELEFT
	3.3.5.3 SB_LINEDOWN
	3.3.5.4 SB_LINERIGHT
	3.3.5.5 SB_PAGEUP
	3.3.5.6 SB_PAGELEFT
	3.3.5.7 SB_PAGEDOWN
	3.3.5.8 SB_PAGERIGHT
	3.3.5.9 SB_THUMBTRACK
	3.3.5.10 SB_ENDSCROLL

	3.3.6 Table
	3.3.6.1 TN_SELCHANGE
	3.3.6.2 TN_DBLCLK
	3.3.6.3 TN_RCLICKED
	3.3.6.4 TN_SETFOCUS
	3.3.6.5 TN_RELEASEFOCUS
	3.3.6.6 TN_COLUMNCLICK
	3.3.6.7 TN_COLUMNENDTRACK
	3.3.6.8 TN_BEGINEDIT
	3.3.6.9 TN_ENDEDIT
	3.3.6.10 TN_CANCELEDIT

	3.4 Virtual key codes

