
PLUK LANGUAGE 
 

Version 3.99 
 

Reference Book 

Moscow, 2001 



2

1 CONTENTS 

1 Contents............................................................................................................................ 2 

2 Introduction ..................................................................................................................... 3 
2.1 Application.......................................................................................................................... 3 
2.2 Overview ............................................................................................................................. 3 
2.3 Requirements to User Skills .............................................................................................. 4 

3 Program Structure ........................................................................................................... 5 

4 Writing Programs ............................................................................................................ 6 

5 Language Elements ......................................................................................................... 8 
5.1 Variables ............................................................................................................................. 8 
5.2 Data Types .......................................................................................................................... 9 
5.3 Operators .......................................................................................................................... 10 
5.4 Operator Precedence ....................................................................................................... 13 
5.5 Constants........................................................................................................................... 14 
5.6 Expressions and Statements ............................................................................................ 15 
5.7 Additional Statements...................................................................................................... 17 
5.8 Functions........................................................................................................................... 18 
5.9 Classes ............................................................................................................................... 21 
5.10 Handling Errors ............................................................................................................... 27 
5.11 Handling Events ............................................................................................................... 32 



3

2 INTRODUCTION 

2.1 Application 

Pluk Language (hereinafter Pluk) is a general-purpose programming language. It is 
independent of any particular operating system and designed to be used on various software and 
hardware platforms (e.g. Windows, UNIX). 

As of today, Pluk has been implemented on Windows 9x / NT / 2000. The 
implementation on UNIX has been temporarily discontinued. 

2.2 Overview 

In the hierarchy of contemporary languages, Pluk represents the third generation of 
languages. Pluk is an object-oriented interpreter (a ‘lazy’ compiler). Syntactically it is similar to 
C++. Like С++, it contains all means of procedure-oriented programming, which allows the ‘old 
school’ programmers to switch to object-oriented programming pretty easily. Frankly, the 
concept of object-oriented programming, in its ‘pure’ form, sometimes requires unnecessary and 
non-productive operations, such as development of classes, whose only purpose being to 
introduce procedures into the language. 

Since the very beginning of its creation, Pluk has been intended to be a mixed (Pluk / 
C++) programming environment. Pluk could be used as an embedded interpreter: the main 
program is written in C++, but some ancillary functions (e.g. references to database) are 
executed by the Pluk machine called from the main program. To address this issue, there is a 
universal mechanism in Pluk for attaching functions and methods of С++. This mechanism 
enables the user to create classes whose methods are written partly in C++ and partly in Pluk. It 
is also possible to create an associated C++ class. Each object of this class will be associated 
with an object of a Pluk class. This allows hiding part of code and data in the C++ class, leaving 
just the interface at the Pluk level. It is possible to create Pluk objects in and invoke Pluk 
methods from code written in C++. In this case, if Pluk objects support redefined operators, the 
latter will be invoked ‘transparently’ through the C++ program. 

Since Pluk is a high-level language interpreter, it imposes certain limitations on the use of 
some C++ methods. It is not possible, for example, to manipulate computer memory from the 
Pluk level, just in contrast to the ‘high-level assembler’ (a nickname of C++, given for its ability 
to access computer resourses directly). This limitation (it can be easily bypassed by means of 
associated C++ class), however, spares the programmer such tasks as freeing allocated memory, 
maintaining the integrity of array and string boundaries, etc. 

An important feature that distinguishes Pluk from С++ is non-type variables. Naturally, 
at a certain point in time, a variable takes the type of its value (for example, a number, string, 
vector, object). However, the name associated with the variable does not have type. If, for 
instance, the variable b initially contained a numerical value 5, its type was int. If later it were 
assigned a string "hello", its type would be String. So, at the stage of coding, the interpreter 
deals with an abstract variable of no particular type. The type check takes place later, at runtime. 
For example, an attempt to add the variable b equaling "hello" to the variable a equaling 5
will throw an error at runtime. 



4

Another feature that differs Pluk from C++ is that a function is a variable that contains a 
string of a special type: an interpretable string. Class methods, although not regular variables, 
also contain interpretable strings. It allows handling both functions and methods as regular 
variables of string type. The programmer can treat an interpretable string as a conventional 
string: find sub-string, replace / delete sub-string, merge strings, etc. Pluk does not support 
overloaded global functions (coinciding by names and differing by types of parameters) since a 
function is a variable and should be accessed by name. A variable name does not contain any 
auxiliary names that define types of parameters since the variable that presently contains a 
function may contain something else in the future (a number, for example). Class methods do 
carry additional information that determines the types of parameters; hence, Pluk supports 
overloaded methods. The type of a parameter can be determined only at runtime since just at that 
time the relationship between a method and its invocation point could be revealed. 

Although Pluk is an interpreter, it is not continuously interpreting source code. Instead of 
doing this, it compiles source code into intermediary B-code to be executed by the virtual Pluk 
machine. A function is compiled at its first call only. As a result, compilations are ‘spread’ in 
time: new functions will be compiled, but already compiled code will be used in recalls. 

There are two types of interpretable strings: 
• an interpretable string of type sfunc (between the limiters <|…|>), compiled into B-

code, preserving useful information for function debugging; 
• an interpretable string of type rfunc (between the limiters {|…|}), compiled into the 

processor’s machine-code with a loss of useful information critical for function 
debugging; the Pluk machine executes machine-code much faster than B-code, but the 
former allocates much more memory. 
The Pluk machine of version 3.xx is a stack machine with an accumulator. It uses 103 

four-byte statements. The first byte determines the type of a statement; all the other bytes depend 
on the statement type. When executing an interpretable string of type sfunc, the interpretation 
of statements in B-code is taking place. While compiling an interpretable string of type rfunc,
machine-code is being generated for each statement in B-code. It goes without saying that an 
interpretable string of type rfunc dramatically falls behind C++ code in performance. 

2.3 Requirements to User Skills 

The user should have basic computer skills and learn this manual. She also needs to be 
familiar with the Standard Library Reference Book and Pluk IDE User Guide. 



5

3 PROGRAM STRUCTURE 

One of the main features that distinguish Pluk from C++ is that classes, methods and 
functions in the former are not defined by declarations, being just executable code. Due to this 
fact, classes, methods and functions can be defined at any stage of execution, similar to regular 
variables. 

This allows the programmer to write programs in Pluk ‘on the fly’. She can run part of 
source code, then change it or add something, and, without program termination, update the 
code. Updated functions in the stack will be duplicated: old bodies of the functions will remain 
in the stack until completion of their execution; new bodies of the functions will be used on 
recalls. Objects of updated classes are not deleted, but adopted to new class definitions. 

If the programmer needs to create a release program, she can group source files into a 
project file. A project file contains the executable sequence of program files. Upon launching of 
the program, these files will be read in this sequence. A file’s content will be assigned to a 
temporary function, which will be executed and deleted afterwards. All local variables defined in 
the function (but not in the functions defined in it) will be deleted upon its deletion. Once the last 
file has been executed, the program will not terminate. It will wait for events from the 
environment (for example, from the window system) sent to static objects, or their sub-objects, 
created at runtime. The static objects will be deleted and the program will terminate after either 
executing an end statement (see 5.7.5) or closing the program from the environment (for 
example, in the Windows environment, a program may be closed from the task bar). 

Note that the sequence of file execution in a project is very important in Pluk, where 
definitions of classes, methods and functions are executable statements. A base class must be 
defined before a derived class, a class method must be defined after the class, etc. If a constant 
(see the #define statement, 5.7.6) is defined after its name has been used in a function, the 
code, referring to the global variable with such name, will be generated in the function. If the 
constant is still undefined at the moment of function execution (and there is no variable of such 
name), the error "Unknown variable" will be thrown. 



6

4 WRITING PROGRAMS 

There is no obligatory pattern for writing programs in Pluk. The programmer may resort 
to any layout just for reader’s convenience. Space, tab and carriage return are regarded as lexeme 
delimiters. If a CR is located within a string, it is regarded as part of the string: 

new a = "beginning and... 
end of the string"; 
Comments in code could be of two types: /*...*/ — block comments and //... — 

line end comments. Arbitrary nesting is allowed for the both types. 
There is a special case of comments of the first type /**...**/. This is a system 

comment that is related to the body of a function, method, or class, which it precedes. A system 
comment is used for documentation of a function, method, or class. It is accessible at runtime in 
the Pluk IDE (see Pluk IDE User Guide) or by means of the methods of the class Pluk (see 
Standard Library Reference Book). For example: 

/** Prints the string **/ 
global PrintStr = 
<| 
 // ... 
|>; 
/** Class of the device **/ 
class Device 
{

// ... 
}; 
/** Opens the device **/ 
new Device::Open(void) = 
<| 
 // ... 
|>; 
If text of a system comment contains a #private statement, the function, method or 

class are private (not public) and invisible, under certain conditions, in the windows of the Pluk 
IDE. It allows the programmer to keep global functions and classes, needed just for technical 
purpose, away from the environment’s browsing windows. For example: 

/** 
#private 
This is a private class 
**/ 
class A 
{

// ... 
}; 
Text of a system comment may also include a #module statement, followed by the path 

to the module containing the class. The path consists of the names of modules and their sub-
modules, separated with periods. If a #module statement is not present in the text, it means that 
the class is located in the root module. Breaking classes into modules allows displaying all 
program classes in Pluk IDE's windows in a tree-like structure. For example: 

/** 
#module root.system.filesystem 
**/ 
class File 



7

{
// ... 

}; 



8

5 LANGUAGE ELEMENTS 

5.1 Variables 

A variable name is a string comprised of letters, numbers, and underscores (up to 32 
symbols). It must start with a letter or underscore, and is case-sensitive. A variable name may not 
coincide with a language keyword. The programmer may use Cyrillic letters. Below, there are 
some examples of variable names: 

a;    // correct 
a12;    // correct 
_MyFunction;  // correct 
12a;    // wrong - cannot start with a number 
Defining a variable, the programmer needs to indicate its scope of existence. The new 

statement defines a local variable, the global statement a global variable. It is always necessary 
to use these statements since it might help avoid accidental definitions in case of typing errors. 
For example: 

new a; // definition of a local variable 
new a = 5; // definition and initiation of a local variable 
global b; // definition of a global variable 
с = 10; // implies the existence of variable c defined 

earlier, 
 // or else an error is thrown at runtime 
A global variable exists until completion of a program or execution of the delete 

statement (see 5.7.3). A local variable exists as long as the function, in which it is defined, is 
being executed. If a local variable has been defined in a block (within the braces), it will be 
inaccessible from outside the block if called by name, although it will be deleted only upon 
exiting the function. Such a delayed deletion may be of some importance just in the case a local 
variable is an object with the destructor. The destructor will be invoked only upon exiting the 
function: 

new A::~A(void) = 
<| 
 trace "deleted"; 
|>; 
global F = 
<| 
param x; 
 if (x > 0) 
 { 
 new a = instance A; 
 trace "Object "; 
 } 
 trace "was "; 
|>; 
F(1); 
The above example will print: ‘Object was deleted’. 
A global variable may not be defined within the braces: 
if (n > 1) 
{



9

global X;  // error 
}
However, it is possible to define a global variable in the body of a function. It occurs, for 

example, at the execution of a project’s file that contains the global variable definition. The 
content of the file is considered to be the body of a temporary function. The variable X will 
appear after execution of the function F in the following example: 

global F = 
<| 
 global X; 
|>; 
The above is also true for methods. For example, the method A::G will appear only after 

execution of the method A::F:
new A::F(void) = 
<| 
 new A::G(void) = 
 <| 
 // ... 
 |>; 
|>; 
Non-initialized variables are of type empty and contain an EMPTY value. 

5.2 Data Types 

Following are the types of data supported by Pluk: 
Token  Description 
empty Non-initialized value. 
boolean Logical value. 
char Unsigned 8-bit integer. 
int Signed 32-bit integer. 
float Floating-point 32-bit number. 
double Floating-point 64-bit number. 
sfunc Pluk function (interpretable string) compiled into B-code. 
rfunc Pluk function (interpretable string) compiled into the processor’s machine-

code. 
cfunc C++ function called from Pluk program. 
pointer Pointer at a variable (not allowed pointers at variables of the types empty,

boolean, char, int, float, double). 
object String String for storing an arbitrary sequence of bytes. May contain arbitrary bytes, 

including zero bytes. A built-in class. 
object Vector Vector for storing an arbitrary sequence of variables. May contain elements of 

different types. For example, a vector having a number in the first element, a 
string in second, and another vector in third. A built-in class. 

object Class User-defined class. 
The above tokens are used to determine the types of parameters taken by a method. In 

addition to type tokens, there are the following tokens may be used: 
Token  Description 
void Empty list of parameters. The only parameter on the method parameter list. 
number Any numeral (char, int, float, double) or a child of the class Number. 
func Any function (sfunc, rfunc, cfunc) or a child of the class Function.



10

any Any type. 
copy Parameter of the copy constructor. The only parameter on the method parameter list. 
... Variable number of parameters. The last item on the method parameter list. 

When defining a parameter of type pointer, it is useful to specify the type it points at: 
pointer object Class.

Sometimes the user needs to define a class representing number or function. In order to 
define a numerical class, it is necessary to derive it from the class Number. One should note that 
object Number is synonymous to number. The numerical types char, int, float, double 
are the final children of the class Number, i.e. nothing could be derived from them. In order to 
define a functional class, it is necessary to derive it from the class Function. One should note 
that object Function is synonymous to func. The functional types sfunc, rfunc, cfunc 
are the final children of the class Function, i.e. nothing could be derived from them. 

A pointer always points at an object, not at the name of the variable containing an object. 
If the object has been moved into another variable (with another name), the pointer will point at 
the object under the new name. For example: 

new a = instance A; 
new ptr = &a;   // ptr points at a 
new b; 
b <- a;    // now ptr points at b 
If a pointed-at object has been deleted, a pointer will point at an object of the class Dump, 

which is void of fields and methods: 
new A::F(void) = 
<| 
 // ... 
}>; 
new a = instance A; 
new ptr = &a;  // ptr points at a 
ptr->F();   // a method of class A is invoked 
a = EMPTY;   // now ptr points at an object of class Dump 
ptr->F();   // error – a method of class A, not class 

Dump 

5.3 Operators 

The following operators are recognized by Pluk: 
Operator Description 

= Performs destructive assignment of second operand to first. For all types of operands. 
:= Copies field namesakes of second operand into first, i.e. only the object fields whose 

names are present in the both operands will be copied. Second operand’s fields 
equaling EMPTY will not be copied. For all types of operands. 

<- Performs destructive moving of second operand into first. Upon executing of the 
operator, second operand equals EMPTY. For all types of operands. 

+ Adds second operand to first. 
+= Adds second operand to first, assigning the result to first. 
– Subtracts second operand from first. 
–= Subtracts second operand from first, assigning the result to first. 
+ Unary plus, does not change the operand. 
– Unary minus, changes the sign of the operand. 
++ Increment of the operand. In contrast to C++, no postfix increment.



11

–– Decrement of the operand. In contrast to C++, no postfix decrement.
* Multiplies first and second operands. 
*= Multiplies first and second operands, assigning the result to first. 
/ Divides first operand by second. 
/= Divides first operand by second, assigning the result to first. 
% Produces the remainder of division of first operand by second. 
%= Produces the remainder of division of first operand by second, assigning the result to 

first. 
** Takes first operand to the power equaling second. 
& Bitwise AND on first and second operands. 
&= Bitwise AND on first and second operands, assigning the result to first. 
| Bitwise OR on first and second operands. 
|= Bitwise OR on first and second operands, assigning the result to first. 
^ Bitwise XOR (exclusive OR) on first and second operands. 
^= Bitwise XOR on first and second operands, assigning the result to first. 
~ Bitwise NOT on the operand. 
&& Logical AND on first and second operands. Returns a Boolean value. 
|| Logical OR on first and second operands. Returns a Boolean value. 
^^ Logical XOR (exclusive OR) on first and second operands. Returns a Boolean value. 
! Logical NOT on the operand. Returns a Boolean value. 
== Compares first operand with second on equality. Returns a Boolean value. For all types 

of operands. 
!= Compares first operand with second on non-equality. Returns a Boolean value. For all 

types of operands. 
< Compares first operand with second on less-than relation. Returns a Boolean value. 
> Compares first operand with second on greater-than relation. Returns a Boolean value. 
<= Compares first operand with second on less-than-or-equal-to relation. Returns a 

Boolean value. 
>= Compares first operand with second on greater-than-or-equal-to relation. Returns a 

Boolean value. 
<> Compares first operand with second on less-than-equal-to-greater-than relation. 

Returns –1 — less than, 0 — equal to, 1 — greater than. 
? : Conditional choice. Returns second operand if first equals TRUE, or third operand if 

first equals FALSE.
<<>> Creates a vector with elements in the angle brackets, separated with commas. 
,= Appends second operand to the end of first, assigning the result to first. First operand 

must be a vector. 
@ Merges first and second operands or appends second to the end of first. In the case of 

merging, first and second operands must be strings / vectors. In the case of appending, 
first operand must be a vector. 

@= Merges first and second operands or appends second to the end of first, assigning the 
result to first. In the case of merging, first and second operands must be strings / 
vectors. In the case of appending, first operand must be a vector. 

[] Access to an element of first operand by index (second operand). First operand must be 
a vector, second an integer. 

() Function call. The function parameters are in parentheses, separated with commas. If 
the operand is not a function, the call will return the operand value. 

@ Unary operator. Allows passing a parameter to a function by reference and return of a 



12

value from a function by reference. 
[] Unary operator. Allows passing a variable number of parameters to a function. 
& Unary operator. Gets a pointer. 
* Unary operator. Dereferences a pointer. 
. Accesses a field of first operand by name (second operand). First operand must be an 

object. 
.* Accesses a field of first operand by the name contained in second. First operand must 

be an object, second a string. 
. Unary operator. Accesses an object field by name. May be used only in the body of a 

method of the object being accessed. 
.* Unary operator. Accesses an object field by the name contained in the operand. The 

operand must be a string. May be used only in the body of a method of the object being 
accessed. 

-> () Invokes a method of first operand, with parameters in parentheses and separated with 
commas, by name (second operand). First operand must be an object. 

->* () Invokes a method of first operand, with parameters in parentheses and separated with 
commas, by the name contained in second. First operand must be an object, second a 
string. 

:: Resolves a class name (first operand) for a field / method name (second operand). 
:: Unary operator. Resolves a global variable / function name. 

One cannot redefine operators of the built-in types. User-defined operators use the 
number of operands as described above, but may be of different type. For example, the user may 
define a binary operator [] from the string: 

new A::[](object String) = 
<| 
 // ... 
|>; 
Following are the operators that may not be defined by the user: 

• =
• := 
• <- 
• ? :
• <<>> 
• unary @ 
• unary [] 
• unary & 
• unary * 
• .
• .* 
• -> 
• ->* 
• :: 

For the type empty, as for any other type, the operators == and != are defined. When 
sorting vectors containing some EMPTY elements, the comparison operators treat an EMPTY value 
as the least of all values. Thus, all of the following expressions equal TRUE:

EMPTY < 0 
EMPTY < "aaa" 
EMPTY < instance A 
EMPTY < FALSE 



13

5.4 Operator Precedence 

In the table below, the operators are enumerated in the ascending order of their 
precedence: 
Operator Precedence Description 

@ 1 Unary operator. Allows passing a parameter to a function by reference 
and return of a value from a function by reference. 

= 2 Assignment. 
:= 2 Copying of field namesakes. 
<- 2 Moving. 
+= 2 Addition with assignment. 
–= 2 Subtraction with assignment. 
*= 2 Multiplication with assignment. 
/= 2 Division with assignment. 
%= 2 Producing the remainder of division with assignment. 
&= 2 Bitwise AND with assignment. 
|= 2 Bitwise OR with assignment. 
^= 2 Bitwise XOR (exclusive OR) with assignment. 
,= 2 Appending with assignment. 
@= 2 Merging with assignment. 
? : 3 Conditional choice. 
|| 4 Logical OR. 
^^ 4 Logical XOR (exclusive OR). 
&& 5 Logical AND. 
== 6 Comparison on equality. 
!= 6 Comparison on non-equality. 
< 6 Comparison on less-than relation. 
> 6 Comparison on greater-than relation. 
<= 6 Comparison on less-than-or-equal-to relation. 
>= 6 Comparison on greater-than-or-equal-to relation. 
<> 6 Comparison on less-than-equal-to-greater-than relation. 
| 7 Bitwise OR. 
^ 7 Bitwise XOR (exclusive OR). 
& 8 Bitwise AND. 
+ 9 Addition. 
– 9 Subtraction. 
@ 9 Merging. 
* 10 Multiplication. 
/ 10 Division. 
% 10 Producing the remainder of division. 
** 11 Exponentiation. 
++ 12 Increment. 
–– 12 Decrement. 
+ 13 Unary plus. 
– 13 Unary minus. 
~ 13 Bitwise NOT. 
! 13 Logical NOT. 



14

& 14 Unary operator. Gets a pointer. 
<<>> 15 Creation of a vector of elements. 
[] 15 Access to a vector’s element. 
() 15 Function call. 
. 16 Access to a field. 
.* 16 Access to a field (indirect). 

-> () 16 Method invocation. 
->* () 16 Method invocation (indirect). 

* 17 Unary operator. Dereferences a pointer. 
. 18 Unary operator. Access to a field. 
.* 18 Unary operator. Access to a field (indirect). 
:: 19 Resolution of a class name. 
:: 19 Unary operator. Resolution of a global variable / function name. 
() 20 Change of precedence. 
[] 20 Unary operator. Allows passing a variable number of parameters to a 

function. 

5.5 Constants 

The user can define constants of any built-in type, excluding cfunc. For example: 
EMPTY    // non-initialized constant 
TRUE    // Boolean constant 
'a', '\0x7f'  // symbolic constant 
5, 376799, 0х877f // integer constants 
5.0, 8.77e10  // 32-bit floating-point constants 
3.14159265359  // 64-bit floating-point constant 
"this is a test"  // string constant 
<|param a; return a * a;|> // functional constant of type sfunc 
{|param a; return a * a;|} // functional constant of type rfunc 
<<1, 2, "test", 5.0>>  // vector constant 
Symbolic and string constant may take hexadecimal values. The following symbolic 

constants are equivalent to each other (the same holds for string constants): 
'\0xff', '\0xFF', '\xff', '\xFF' 
A constant may be defined as an object of a class whose constructor can be executed at 

the compiling stage. The following statement defines the constant CLR_LIGHTRED, being an 
object of the class ColorRef:

#define CLR_LIGHTRED  instance ColorRef(255, 0, 0) 
Following are the built-in constants in Pluk: 

Constant Description 
EMPTY Non-initialized constant. 
TRUE Boolean constant means true. 
FALSE Boolean constant means false. 
PI Constant π.
CR Carriage return. 
NULL 0. 
FD Symbol, a separator within a filename. 
SFD Single-symbol string, a separator within a filename. 
CmdLine Vector of command line parameters, excluding system parameters (for 



15

example, /debug). 
ExeName Full name of the program executable file. 
LogFile Full name of the program log-file. The constant will appear only if the 

program starts with the /l parameter on the command line. 
LogStackOnError If this Boolean constant is set, any error will result in tracing the stack 

content into the log-file. The constant will appear only if the program starts 
with the /stack parameter on the command line. 

There are several dozens of constants that start with the prefix ERR_. They are the codes 
of system errors that may be thrown by the Pluk machine and standard libraries. 

5.6 Expressions and Statements 

All statements are terminated with a semicolon: 
a = b + c * d; 
for (new i = 0; i < n; ++i) 
 x[i] = i; 
Expressions and statements in Pluk look similar to those in C++. Some operators in Pluk, 

however, have different precedence. For example, the precedence of the dereference operator *
is much higher in Pluk than in C++. 

To specify the evaluation order (if it is necessary to change operator precedence), the 
parentheses () are used. To group a set of statements in one statement, the braces {} are used. 

Below there are the flow control statements. 

5.6.1 Conditional Statement 
if (expression)

true-expression;
[else 
 false-expression;] 
If the expression evaluates to true, the true-expression is executed; otherwise, the 

false-expression (may be omitted) is executed. 

5.6.2 Loop Statement with Initialization 
for (init-expression; expression; after-expression)

body-expression;
The init-expression is executed, then the expression. If the expression is 

evaluated to true, the body-expression and after-expression are executed, and the loop 
will reiterate. If the expression evaluates to false, the loop will be terminated. 

Note that variables defined in the init-expression remain defined even after loop 
termination (in contrast to standard C++). So there is an example of checking the reason of loop 
termination: 

for (new i = 0; i < n; ++i) 
 if (a[i] == EMPTY) 
 break; 
if (i < n) 
 trace "EMPTY found", CR; 

5.6.3 Prefix Loop Statement 
while (expression)

body-expression;



16

The expression is executed in the loop. If the expression evaluates to true, the 
body-expression is executed, and the loop will reiterate. If the expression evaluates to 
false, the loop will be terminated. 

5.6.4 Postfix Loop Statement 
do 
 body-expression 
while (expression); 
The body-expression and expression are executed. If the expression evaluates 

to true, the loop will reiterate. If it evaluates to false, the loop will be terminated. 

5.6.5 Switch Statement 
switch (switch-expression)
{
[case case-expression1:

expression1;
[break;]] 

[case case-expression2:
expression2;
[break;]] 

…
[case case-expressionn:

expressionn;
[break;]] 

[default: 
 expressionn+1;

[break;]] 
}
The switch-expression and case-expression1 are executed. If their values are 

equal, the expression1 is executed. If the expression1 is followed by a break statement, the 
switch statement is terminated; otherwise, the case-expression2 is executed and its value is 
compared to the value of the switch-expression (evaluated only once), etc. If all of the 
above equations are false or there is no break statement after the expressionn, the 
expressionn+1 is executed. 

In a switch statement, the case-expressioni is an arbitrary expression, which is 
different from C++, where it is a constant. For example, the code 

switch (TRUE) 
{
case f(): 
 // code 1 
 break; 
case g(): 
 // code 2 
 break; 
default: 
 // code 3 
}
is equivalent to the code 
if (f() == TRUE) 
 // code 1 
else 
 if (g() == TRUE) 



17

 // code 2 
 else 
 // code 3 

5.6.6 Statement Terminating Loop or Switch 
break; 
Terminates a loop (see 5.6.2, 5.6.3, 5.6.4) or switch (see 5.6.5). 

5.6.7 Statement Terminating Loop Iteration 
continue; 
Passes the flow control on to the beginning of the loop (see 5.6.2, 5.6.3, 5.6.4). In the 

case of a loop with initialization (see 5.6.2), the after-expression is executed. 

5.6.8 Jump Statement 
goto label;
// ... 
label:
Passes the flow control on to the label.

5.7 Additional Statements 

Besides the flow control statements (see 5.6), there is a number of additional statements 
described below. 

5.7.1 Statement for Tracing into Standard Output 
trace expression1, expression2, …, expressionn;
Prints the value of the expressioni into the standard output: 
trace "a = ", a, " b(", j, ") = ", b(j), CR; 

5.7.2 Statement for Expression Type 
typeof(expression); 
Returns a string that is the type name of the expression value: 
if (typeof(a) == "int") 
 // ... 
else 
 if (typeof(a) == "String") 
 // ... 

5.7.3 Statement for Removal of Global Variables 
delete name1, name2, …, namen;
Deletes global variables namei.

5.7.4 Statement for Halting Program 
stop; 
Switches a program into a stand-by mode to wait for commands from the debugger (see 

Pluk IDE User Guide). The program execution may be continued from the debugger only. 



18

5.7.5 Statement for Terminating Program 
end; 
Terminates the program execution. 

5.7.6 Statement for Constant Definition 
#define name expression 
Defines the constant name, equaling the expression value. The statement is similar to 

the analogous statement of the C++ preprocessor but the expression may be just an expression 
evaluated at the stage of the constant definition. 

5.8 Functions 

In order to call a function, the user needs the following statements: 
function-name([expression1, expression2, …, expressionn]); 
For example: 
f();  // call of a function with no parameters 
g(5, 7); // call of a function with two parameters 
The following statements are used in function definitions: 
new function-name = <| ... |>; 
new function-name = {| ... |}; 
global function-name = <| ... |>; 
global function-name = {| ... |}; 
The first function is local; the second is local and compiled into the processor’s machine-

code. The third function is global; the fourth is global and compiled into the processor’s 
machine-code. A global function differs from a local one in the same way a global variable 
differs from a local variable (see 5.1). In fact, all of these statements are the definitions of 
variables, with assigned values of type sfunc / rfunc, which is quite similar to conventional 
variable definitions: 

new a = 5; 
global b = instance Vector(10); 
a = <| // ... |>; 
b = {| // ... |}; 
A variable is a function if it holds a value of type sfunc / rfunc. This allows local 

functions to be defined inside other functions: 
global F = 
<| 
 // ... 
 new f = 
 <| 
 param a, b; 
 return a.Name <> b.Name; 
 |>; 
 v->QSort(f); 
 // ... 
|>; 
Since functions are stored in the same namespace as conventional variables (unlike 

methods), there is no way to specify the types of their parameters (which is possible in the case 
of methods, see 5.9.2). If it is necessary, a function must check itself for the types of its 
parameters. The function performs the check by a typeof statement and throws an error each 
time the type is invalid: 

global F = 



19

<| 
param s; 
 if (typeof(s) != "String") 
 Pluk->SetError(ERR_WRONG_PARAMETERS); 
 // ... 
|>; 

5.8.1 Statement for Taking Parameters 
The param statement is used to specify the parameters taken by a function: 
param name1, name2, …, namen;
namei is the name of a taken parameter. The param statement must be first in the body 

of a function. 
The number of parameters passed at the function call must be no less than the number of 

parameters to be taken (enumerated in the param statement); otherwise, the error 
ERR_WRONG_PARAMETER_NUMBER will be thrown. 

5.8.2 Statement for Taking a Variable Number of Parameters 
If a variable number of parameters are passed to a function, they could be taken by the 

parest statement: 
parest name;
name is the name of a variable containing the parameters taken by the function, but not 

enumerated in the param statement. The variable name contains a vector each element of which 
contains a pointer to a parameter if the latter is an object, or a copy of a passed parameter if the 
latter is not an object (because it is impossible to get a pointer at the parameter). In the function 
body, the parest statement must go on top or follow the param statement. 

For example, a function may take, in addition to a string, one or two parameters (non-
objects, in this case) and assign them to local variables: 

global F = 
<| 
param s; 
parest pars; 
 new x, y; 
 if (pars->Len() > 0) 
 x = pars[0]; 
 if (pars->Len() > 1) 
 y = pars[1]; 
 // ... 
|>; 

5.8.3 Value Return Statement 
For a function to return a value, the return statement is used: 
return [expression]; 
The function will return EMPTY, if the expression is absent. 

5.8.4 Pass and Return by Reference 
By default, a parameter passed to a function is copied into a parameter taken by the 

function, i.e. the parameter is passed by value. However, the user can arrange passing by 
reference, i.e. the taken parameter will be not a copy, but a synonym of the passed value. The 
arrangement may be performed in one of the two following forms: 

• by describing a method parameter with the keyword refer (see 5.9.2); 



20

• by calling a function / invoking a method using the unary operator @ (see 5.3). 
In the following example, the parameters x and z are passed by reference, and the 

parameter y by value, into the function g:
g(@x, y, @z); 
By default, the expression value in the return statement (see 5.8.3) is copied into the 

value returned by a function. However, the user can arrange the return by reference, i.e. the 
returned value will be not a copy, but a synonym of the expression in the return statement (the 
expression must be l-value). It can be done by returning the value from a function / method using 
the unary operator @ (see 5.3). 

In the following example, the function f returns the value of the global variable a by 
value, whereas the function h returns it by reference: 

global a; 
global f = 
<| 
 return a; 
|>; 
global g = 
<| 
 return @a; 
|>; 
g() = 5;   // equivalent to a = 5 

5.8.5 Passing a Variable Number of Parameters 
To pass a vector as a parameter list (not just a vector) to a function, the unary operator [] 

is used (see 5.3). For example: 
new p = <<1, "test", TRUE>>; 
g(a, [p]); 
is equivalent to 
g(a, 1, "test", TRUE); 
The same without the operator []:
g(a, p); 
is equivalent to 
g(a, <<1, "test", TRUE>>); 
The operator [] may be applied to the last function parameter only. Most frequently, the 

operator [] is used in a function to pass a variable number of the function’s parameters to 
another function: 

global F = 
<| 
param s; 
parest pars; 
 // ... 
 G([pars]); 
 // ... 
|>; 
Such application of the operator [] is most helpful when defining derived classes (see 

5.9.5). 
If it is necessary to pass a parameter list by reference, the statement must be as follows: 
g(a, [@p]); 



21

5.9 Classes 

To define a class, the programmer should use a class statement: 
class class-name [: parent-name1, parent-name2, …, parent-namen]
{

[field-name1;
field-name2;
…
field-namem]; 

[
global: 
 [global-field-name1;

global-field-name2;
…
global-field-namek]; 

]
}; 
The statement defines a class with the name class-name, which is derived from the 

classes parent-namei and contains the fields field-namei, as well as the global fields 
global-field-namei.

Following is the definition of the class Point, containing the fields x, y:
class Point 
{

x; 
 y; 
}; 
A global field differs from a conventional one in that the former belongs to a class, not an 

object, i.e. a global field of a class is shared by all objects of the class. In the class Point the 
field Precision, specifying the number of decimal digits that will be used in printing a point’s 
coordinates, is defined in the example below: 

class Point 
{

x; 
 y; 
global: 
 Precision; 
}; 
Class names are stored in a different namespace than variable names, so it is possible 

(and sometimes quite handy) to define a global variable with the same name as the class of the 
object contained in this variable: 

global Point = instance Point; 

5.9.1 Access to Fields 
To access an object’s field, the binary operator . (period, see 5.3) is used. In the body of 

a method, to access a field of the object, for which the method has been invoked, the unary 
operator . (period, see 5.3) is used. For example: 

new Point::Point(void) = 
<| 
 .x = 0;  // access to fields of the object itself 
 .y = 0; 
|>; 
new p = instance Point; 
p.x = 100;   // access to fields of the object p 



22

p.y = 200; 
Accessing a class global field is similar to accessing a regular object field. For example: 
new Point::Point(void) = 
<| 
 // ... 
 .Precision = 6; 
|>; 
or 
new p = instance Point; 
p.Precision = 6; 
Frequently, the user accesses a class global field not via a class object, but by means of 

the binary operator :: (see 5.3), where first operand is the class name, second the field name: 
Point::Precision = 6; 
The binary operator . (period) allows using a pointer as its first operand in accessing a 

field of the object it points to: 
new p = instance Point; 
new ptr = &p; 
ptr.x = 100;   // access to fields of the object p 
ptr.y = 200; 

5.9.2 Methods 
The operator -> (see 5.3) is used to invoke a method. Additionally, the operator -> is 

used in the body of a method to invoke another method for the same object. But in this case, the 
operator has the self keyword (reference to the object the method has been invoked for) as its 
first operand: 

new Point::Redraw(void) = 
<| 
 self->Clear(); // invocation of the method Clear of the 
 self->Draw(); // object itself 
|>; 
new p = instance Point; 
p->Redraw(); // invocation of the method Redraw of the object 

p
The following statements are used to define a method: 
new class-name::method-name(void) = <| ... |>; 
new class-name::method-name(void) = {| ... |}; 
new class-name::method-name(type1, type2, …, typen) = <| ... |>; 
new class-name::method-name(type1, type2, …, typen) = {| ... |}; 
The first method has no parameters; the second has no parameters and is compiled into 

the processor’s machine-code. The third method takes parameters of type typei (see 5.2); the 
fourth takes parameters of type typei and is compiled into the processor’s machine-code. For 
example: 

new Point::Load(number, number) = 
<| 
param x, y; 
 .x = x; 
 .y = y; 
|>; 
As in the case of functions, all of the above statements are the definitions of methods 

with the empty body and the assigned value of type sfunc / rfunc.
A class may have several methods with the same names, but different types of 

parameters. In the class Point, for instance, two methods may be defined to move a point: 



23

new Point::Move(number, number) = 
<| 
param x, y; 
 .x += x; 
 .y += y; 
|>; 
new Point::Move(object Point) = 
<| 
param p; 
 .x += p.x; 
 .y += p.y; 
|>; 
If the keyword refer appears before the type of a parameter, the parameter will be 

passed by reference (see 5.8.4). For example: 
new Point::Move(refer object Point) = 
<| 
param p; 
 .x += p.x; 
 .y += p.y; 
|>; 
If a method takes a parameter by value, the parameter may be passed by reference at the 

point of method invocation by means of a unary operator @ (see 5.3). 
If a method already exists, it may be handled as a variable (for instance, another value 

could be assigned into it). To handle a method as a variable, the user must indicate the class 
name, method name and types of parameters; all of these will comprise the method name. 

For example, the user can redefine the existing method Clear of the class Point:
Point::Clear(void) = 
<| 
 .x = .y = EMPTY; 
|>; 
or add the body of the addition operator of the class Point to the body of the function f:
f @= Point::+(object Point); 
The operator -> allows using a pointer as its first operand to invoke a method of the 

object it points to: 
new p = instance Point; 
new ptr = &p; 
ptr->Redraw(); // invocation of the method Redraw of the object 

p

5.9.3 Constructors and Destructors 
Each class may have a special method (or several methods differing in the types of 

parameters) whose name coincides with the class name. This method is called a constructor. The 
constructor is invoked each time a class object is being created. Two constructors of the class 
Point are defined in the following example: 

new Point::Point(void) = 
<| 
 .x = 0; 
 .y = 0; 
|>; 
new Point::Point(number, number) = 
<| 
param x, y; 
 .x = x; 



24

.y = y; 
|>; 
Each class may have a special method whose name coincides with the class name 

preceded by the prefix ~. This method is called a destructor. The destructor is invoked each time 
a class object is being deleted. The example below presents the destructor of the class Point:

new Point::~Point(void) = 
<| 
 trace "Point is deleted", CR; 
|>; 
To create a class object, the programmer should use the keyword instance along with 

the class name and parameters passed to the constructor. For example: 
new p1 = instance Point;  // Point::Point(void) 
new p2 = instance Point();  // Point::Point(void) 
new p3 = instance Point(5, 6); // Point::Point(number, number) 
There is a special type of constructor among all constructors that is invoked when an 

object is being copied. This is the copy constructor: 
new a = instance Point(100, 100); 
new b = a;   // the copy constructor is invoked 
It is not possible to invoke the copy constructor directly since it is invoked automatically. 

If the user has not defined the copy constructor in a class, only the object’s fields will be copied 
at the moment of object copying. To define the copy constructor, the user must indicate the 
keyword copy as a parameter list. The copy constructor takes just one parameter: a reference to 
the object from which copying takes place. For example, the copy constructor (just copying 
fields) is defined in the class Point: 

new Point::Point(copy) = 
<| 
param src; 
 .x = src.x; 
 .y = src.y; 
|>; 
Any object supports delayed deletion. If a certain method is running and the object has 

been deleted by destructive assignment or the delete statement, the object will disappear from 
the sight of the ‘outside beholder’. In the first case, the variable will hold a new value; in the 
second case, the global variable will disappear along with the object. For all the object methods, 
running at this moment, however, the object is still accessible under the name self. The object 
will be really deleted (i.e. the destructor will be invoked) only after return from the last object 
method. For example: 

new A::F(void) = 
<| 
 self = instance C; 
 trace typeof(self), CR; // A 
 trace typeof(a), CR;  // C 
|>; 
global a = instance A; 
a->F(); 
One more important observation regarding object deletion: the order of deletion of 

variables (hence, the order of execution of their destructors) is not determined at the time of exit 
from a function or termination of a program. Sometimes it may result in certain problems, when 
several global objects try to use each other at program termination. For example, if the main 
window of a program (global variable MainWnd) tries to write something into the configuration 
file (global variable Ini) at the moment of deletion, it may learn that the file no longer exists: 

new MainWnd::~MainWnd(void) = 



25

<| 
 Ini->WriteBool("Window", "Maximized", self->IsMaximized()); 
 // possibly, variable Ini no longer exists 
|>; 
global MainWnd = instance MainWnd; 
global Ini = instance IniFile("App.ini"); 
To avoid such indeterminacy, the user should control the process of deletion of global 

objects. She can move the code of the program termination from the destructor into a window 
method, invoked at the time the window closes (all global objects still exist). The user can set the 
order of deletion of global objects in this method, knowing the relationships among them (what 
uses what at the time of deletion): 

delete Pars; 
delete Ini; 
or 
Pars = EMPTY; 
Ini = EMPTY; 

5.9.4 User-defined Operators 
To define an operator, the programmer uses the same statements as for method 

definitions. A symbolic notation of the operator is used as a method name. In a unary operator, 
self is the operand. In a binary operator, self is the first operand, and the method parameter is 
the second operand. It is possible, for example, to define the addition operator for objects of the 
class Point:

new Point::+(object Point) = 
<| 
param p; 
 return instance Point(.x + p.x, .y + p.y); 
|>; 
new p1 = instance Point(100, 200); 
new p2 = instance Point(200, 300); 
new p3 = p1 + p2; 

5.9.5 Inheritance 
Pluk supports class inheritance, including multiple one. 
The class Point3D may be derived from the class Point:
class Point3D : Point 
{

z; 
}; 
One can define a class that has two or more parents: 
class ColorPoint3D : Point3D, ColorRef 
{
}; 
In the case of multiple inheritance, the object fields inherited from a base class are 

present in just one copy. For example, an object of the class D contains just one object of the 
class A:

class A {}; 
class B : A {}; 
class C : A {}; 
class D : B, C {}; 
For the above example, the inheritance graph looks as shown in Fig. 5.9-1. 



26

Fig. 5.9-1 Multiple Inheritance of a Class from Two Classes with the Common Parent 

A derived class inherits all the methods of a base class. If an invoked method is defined 
in both a derived and base classes, the method of the derived class will mask the method of the 
base class (excluding the constructor). It means that all methods (saving the constructor) are 
virtual, using the terminology of C++. Accordingly, a method of the class, whose object is 
contained in a variable, will always be invoked if the method has been defined in this same class; 
otherwise, the method of the nearest base class will be invoked. The last case may throw the 
error ERR_AMBIGIOUS_METHOD_CALL if there are several base classes equidistant in the 
inheritance hierarchy from the given class in which the method is invoked. If it is necessary to 
invoke a method of just a base class, it could be done by means of the binary operator :: (see 
5.3), where first operand is the base class name, second the method name. 

If it is necessary to invoke the base class constructor in the derived class constructor, this 
could be done by invoking a method with the base class name. For example: 

class A {}; 
new A::A(int) = 
<| 
param n; 
 // ... 
|>; 
new A::Setup(void) = 
<| 
 // ... 
|>; 
class B : A {}; 
new B::B(int) = 
<| 
param n; 
 self->A(n);  // parent constructor is invoked 
 // ... 
|>; 
new B::Setup(void) = 
<| 
 self->A::Setup(n); // parent method is invoked 
 // ... 
|>; 
All of the above regarding masking of methods of a base class by methods of a derived 

class is applicable to accessing fields in the case of using the binary operator . (period, see 5.3). 
In the case of using the unary operator . (period, see 5.3), however, it is always possible to 
access a field of the class whose method uses the operator (or the nearest base class having the 
same field), but not of the class whose object is contained in the variable. If the binary operator .
(period), with first operand equaling self, is used instead of the unary operator . (period), it 



27

will enable access to a field of the class whose object is contained in self (or the nearest base 
class having the same field). For example: 

class A 
{

x; 
}; 
new A::F(void) = 
<| 
 .x = 1;  // access to field of class A 
 self.x = 2; // access to field of class B 
|>; 
class B : A 
{

x; 
}; 
new b = instance B; 
b->F(); 
b.x = 3;   // access to field of class B 
The constructor of a base class must be invoked directly (if it should be invoked at all) at 

any point in the constructor of a derived class (even in nested functions). The copy constructor is 
an exception. The copy constructor is always automatically invoked, first for base classes then 
for a derived class. It is not necessary, for instance, to invoke the copy constructor of the class 
Point from the copy constructor of the class Point3D:

new Point3D::Point3D(copy) = 
<| 
param src; 
 .z = 2 * src.z; 
|>; 
The destructor of a base class is also invoked automatically. Its invocation is performed 

in the reverse order: first for a derived class then for base classes. 
At the development of a derived class, a problem arises of redefining a great number of 

the base class constructors for they will not be invoked automatically. This problem may be 
solved by means of the unary operator [] (see 5.8.5). It is possible to define the constructor of 
the derived class B able to take any parameters and pass them to the constructor of the base class 
A (if the appropriate constructor is absent, an error will be thrown): 

class B : A {}; 
new B::B(...) = 
<| 
parest p; 
 self->A([p]); 
|>; 
Meanwhile, additional special constructors may be defined in the class B.

5.10 Handling Errors 

5.10.1 Local Handling 
For local handling of errors thrown by a program, an onerror statement is used. It sets 

up an error catch-point (handler). At the moment of throwing an error, the flow control is passed 
on to a handler activated at the execution of the last onerror statement in a function in the 



28

stack. This results in a rollback from the stack functions to the nearest onerror statement, 
accompanied by deletion of local variables. For example: 

global F = 
<| 
param x; 
 new y; 
 y = 1 / x; 
 onerror 
 { 
 trace "Error 1", CR; 
 return; 
 } 
 y = 1 / (x – 1); 
 onerror 
 { 
 trace "Error 2", CR; 
 return; 
 } 
 y = 1 / (x – 2); 
 return y; 
|>; 
global G = 
<| 
param x; 
 new y; 
 y = F(x); 
 onerror 
 { 
 trace "Error 3", CR; 
 return; 
 } 
 y = F(x – 10); 
 return y; 
|>; 
G(0); 
G(1);   // Error 1 
G(2);   // Error 2 
G(10);  // Error 3 
G(11);  // Error 1 
G(12);  // Error 2 
If there is no onerror statement encountered during the execution of the functions in the 

stack, the rollback from all the functions takes place, and the program slips into a stand-by mode, 
waiting for events from the operating environment. 

It is often necessary to distinguish the errors that result in passing the flow control into 
the body of an onerror statement. Every error has a description string. Additionally, an error 
may be registered by means of the method Pluk::CRegError and assigned a unique integer 
code. By convention, the name of a constant whose value is equal to the error code should start 
with the prefix ERR_.

The user can throw an error by means of the method Pluk::CSetError, using just a 
description string. At the catch-point, the user must apply the method Pluk::CGetError that 
returns the description string. The user can throw a registered error by means of the method 
Pluk::SetError, using the error code. At the catch-point, the user may apply either the 



29

method Pluk::CGetError, returning the description string, or the Pluk::GetError,
returning the integer error code. 

Upon executing the code inside the onerror statement, the user may continue the 
rollback from the stack with the same error, using a rollback statement (instead of a return 
statement or code completion). For example, in the case of error-throwing in the method 
File::Read invoked from the method IniFile::ReadSection, two messages are printed: 
‘Reading file error’ and ‘Reading section error’: 

class File 
{

// ... 
}; 
new File::Read(int) = 
<| 
param n; 
 onerror 
 { 
 trace "Reading file error", CR; 
 rollback; 
 } 
 // ... 
|>; 
class IniFile : File 
{
}; 
new IniFile::ReadSection(object String) = 
<| 
param name; 
 onerror 
 { 
 trace "Reading section error", CR; 
 rollback; 
 } 
 // ... 
 new s = self->Read(n); 
 // ... 
|>; 
In addition to this, the user can throw another error inside an onerror statement. For 

example, in case of throwing any error in the method IniFile::ReadSection, the error 
ERR_INI_FILE_READ_ERROR is thrown: 

new IniFile::ReadSection(object String) = 
<| 
param name; 
 onerror 
 { 
 Pluk->SetError(ERR_INI_FILE_READ_ERROR); 
 } 
 // ... 
|>; 
Code inside an onerror statement usually ends with a return or rollback statement, 

or by throwing another error. Otherwise, the code will be completed and the flow control will be 
passed on to the statement immediately following the onerror statement. Hence, the code in 
which the error has been thrown will be executed again. It might be useful if it is necessary to 
repeat the attempt until it succeeds: 



30

global ReadFromFile = 
<| 
 new fileName; 
 onerror 
 { 
 if (ConfirmationBox("File " @ fileName @ 
 " not found. Try another file?") != IDYES) 
 rollback; 
 } 
 // Get the filename from the user 
 fileName = GetFileNameFromUser(); 
 // ... 
|>; 
Upon throwing an error, the flow control is passed on to the catch-point activated at the 

execution of the last onerror statement. This may cause certain problems. For example, the 
user often catches errors within the loop to prevent erroneous iterations from interfering with 
successful ones. Upon exiting the loop, however, the handler defined in the loop will go on 
intercepting errors thrown elsewhere in the function. So the user needs to add a handler with a 
rollback statement at the end of the loop: 

for (new i = 0; i < n; ++i) 
{

onerror 
 { 
 continue; 
 } 
 // ... 
}
F();  // bad - error in F is caught in the loop body! 
onerror 
{

rollback; 
}
F();  // ok - error in F is not caught in the loop body 
If an error is thrown inside an onerror statement, the flow control is passed on to the 

handler activated at the execution of the last onerror statement in the function that calls a given 
function. For example: 

global F = 
<| 
param x; 
 new y; 
 onerror 
 { 
 trace "Error 1", CR; 
 y = 1 / (x – 1); 
 return; 
 } 
 y = 1 / (x – 1); 
 onerror 
 { 
 trace "Error 2", CR; 
 y = 1 / (x – 2); 
 return; 
 } 
 y = 1 / (x – 2); 



31

 return y; 
|>; 
global G = 
<|
param x; 
 onerror 
 { 
 trace "Error 3", CR; 
 return; 
 } 
 return F(x); 
|>; 
G(1);   // Error 1, 3 
G(2);   // Error 2, 3 
If a function contains a syntax error, the error will not be caught by any onerror 

statement defined in the function, because the latter will not be compiled altogether. In this case, 
a syntax error will be thrown in the function that calls the function with the error. 

5.10.2 Global Handling 
The handler statement is used for global handling of errors thrown by a program. A 

handler statement links the registered error code to a global function (or a global class field of 
type function) that will be the global handler: 

handler error-code, function-name;
error-code is the error code, function-name is the handler name. 
The handler statement returns the previous handler (or nothing, if a handler has not 

been defined yet). It is possible to define a new handler and call an old one inside it: 
global MyErrorHandler = 
<| 
 // ... 
|>; 
handler ERR_MY_ERROR, MyErrorHandler; 
// ... 
global MyErrorHandler2 = 
<| 
parest p; 
 if (OldErrorHandler != EMPTY) 
 OldErrorHandler([@p]); 
 // ... 
|>; 
global OldErrorHandler = handler ERR_MY_ERROR, MyErrorHandler2; 
The following parameters are passed to the global handler: 

Parameters Description 
ErrorCode Error code. 
AddStr Error description string. 
FirstLine The number of the first line of the function the error has been thrown in (starting from 

the beginning of the file); equals –1 if unknown. 
CurrLine The number of the line in the function the error has been thrown on (starting from the 

first line of the function); equals –1 if unknown. 
Object Passed if the error code equals ERR_NON_MEMBER (access to a nonexistent field of the 

Object) or ERR_METHOD_NOT_FOUND (invocation of a nonexistent method of the 
Object). 



32

If the global handler invokes a rollback statement, the flow control will be passed on 
to the local handler (see 5.10.1); otherwise, the code that has thrown the error will go on running. 

If the global handler for ERR_OUT_OF_MEMORY, ERR_UNDEFINED_CLASS,
ERR_NON_MEMBER, ERR_METHOD_NOT_FOUND does not invoke a rollback statement, the 
statement that has thrown the error will be executed again. It allows the error handler to free 
memory, define a missing class / field / method, substitute the object with an object supporting 
the missing field / method, etc. 

5.11 Handling Events 

Pluk enables the user to handle events sent from the operating system, i.e. pass the flow 
control on to a certain method upon receiving a certain event by an object. In contrast to the 
global handler, the event handler is a class method. Naturally, the class must be derived from a 
class, representing the system resource able to generate events. For example, the class GWnd 
represents a window able generate window events, the class PCom represents a communication 
client / server able to generate communication events (see Standard Library Reference Book). 

To link the event code to the class method being the event handler, an event statement is 
used: 

event expression, class-name::method-name;
If an object of the class class-name (or a derived class) receives an event whose code 

equals the integer value of the expression, the object’s method method-name will be 
invoked. The expression often equals the value of a constant, a member of a group of prefixed 
constants. For example, the names of window events constants start with the prefix WND_. The 
type of parameters of the method method-name should satisfy the parameters passed at the 
point of event generation. 

Almost in all cases, events are generated by an operating environment (for instance, the 
window environment). The user, however, can generate an event herself, using a simulate 
statement: 

simulate (expression, object)(); 
simulate (expression, object)(param1, param2, …, paramn); 
object receives the event whose code equals the integer value of the expression,

without parameters (first statement) or with parameters parami (second statement). 


	1 CONTENTS
	2 INTRODUCTION
	2.1 Application
	2.2 Overview
	2.3 Requirements to User Skills

	3 PROGRAM STRUCTURE
	4 WRITING PROGRAMS
	5 LANGUAGE ELEMENTS
	5.1 Variables
	5.2 Data Types
	5.3 Operators
	5.4 Operator Precedence
	5.5 Constants
	5.6 Expressions and Statements
	5.6.1 Conditional Statement
	5.6.2 Loop Statement with Initialization
	5.6.3 Prefix Loop Statement
	5.6.4 Postfix Loop Statement
	5.6.5 Switch Statement
	5.6.6 Statement Terminating Loop or Switch
	5.6.7 Statement Terminating Loop Iteration
	5.6.8 Jump Statement

	5.7 Additional Statements
	5.7.1 Statement for Tracing into Standard Output
	5.7.2 Statement for Expression Type
	5.7.3 Statement for Removal of Global Variables
	5.7.4 Statement for Halting Program
	5.7.5 Statement for Terminating Program
	5.7.6 Statement for Constant Definition

	5.8 Functions
	5.8.1 Statement for Taking Parameters
	5.8.2 Statement for Taking a Variable Number of Parameters
	5.8.3 Value Return Statement
	5.8.4 Pass and Return by Reference
	5.8.5 Passing a Variable Number of Parameters

	5.9 Classes
	5.9.1 Access to Fields
	5.9.2 Methods
	5.9.3 Constructors and Destructors
	5.9.4 User-defined Operators
	5.9.5 Inheritance

	5.10 Handling Errors
	5.10.1 Local Handling
	5.10.2 Global Handling

	5.11 Handling Events


